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AbstracL The generalization ability of the Hopfield model of neural networks trained wilh 
examples is studied in mean-field theory in the presence of synaptic noise. Although the latter 
improves the generdization ability for a finite number of concepts, it does not for a mcmscopic 
number of them. Nevertheless, the network performance is still robust against synaptic noise. 
Numerical simulations are perfamed to verify the mean-field W r y  predictions. 

1. Introduction 

The main interest over the past in feedback neural networks has been in their storage 
capacity and ability to retrieve a set of learned patterns [1,2]. A further attractive issue 
is the generalization ability (and related aspects, i.e., categorization [3-51). that is, the 
spontaneous emergence of features that were not originally built into the network in the 
training stage. Candidates for this goal are networks with hierarchical patterns, as long as 
the learning rules that are employed do not already contain the specific features desired as 
an output that appeared in earlier works [6]. Generalization has been the subject of intensive 
studies in the context of single-layer feed-forward neural networks [7-121. 

The creation of a representation for concepts in simple noiseless feedback neural 
networks, described by the Hopfield model trained with examples has been studied in recent 
works (13-151. It has been shown that the spurious mixture states always present in these 
networks play a crucial role in extracting meaningful information from the activity patterns 
to which the network is exposed in the training stage. 

It turns out that a minimum number of examples should be taught to the network before 
it starts to generalize. It was found, in mean-field theory (m), that the generalization 
error of the noiseless network drops discontinously when a critical number of examples 
is presented 1141. This is in contrast to the behaviour found for singlelayer feed-fonvard 
networks [8-11]. Early numerical simulations [ 1.51 failed to confirm this behaviour. 

In biological systems some neurons may spontaneously become active without extemal 
stimulus. In order to mimic this, a stochastic behaviour may be inhoduced in an artificial 
neural network by defining a parameter ,9 as an inverse temperature ( T I ) .  The natural 
question that arises is: how does the temperature (synaptic noise) affect the generalization 
ability? The introduction of temperature allows to compensate for an overemphasis on the 
examples in the training stage, as shown in the context of feed-forward networks 19, IO], 
but not yet exploited for attractor neural networks. 

In the Hopfield model the states of the neurons are represented by king spins, 
Sf = r t l ,  i = 1, ..., N. Training the network with examples means that during the learning 
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stage, a set of s examples {ty], U = 1, ..., s of each concept {t/), p = I .  ..., p is presented 
and stored in the network using the Hebb leaming rule 

P R Krebs and W K Theumnnn 

The examples are assumed to be statistically independent and equally distributed random 
variables according to the probability distribution 

P ( c / ” )  = blS($” - 1) + bzS(ep” + I) (2) 

where bl = h ( l  + C;/b), bz = $(I  - f / b )  and 0 5 b 5 1. The components of the 
concepts are statistically independent and chosen as <,” = kl, with equal probability. This 
choice provides the simplest form for generalization of hierarchically organized patterns. 
The parameter b measures the correlation between the examples and the concepts so that the 
lower b the more difficult is the extraction of meaningful information from the examples. 

Since the Ji, are symmetric, an energy function can be defined as 

I N N  H = - - E C J i i S i S j  
2 i = l  j+ i  

(3) 

which governs the dynamic retrieval process. The generalization performance is 
characterized by the overlap between a concept (/ and a minimum (or near-minimum) 
state S; of H 

Creating a representation for concepts amounts to generate a set of finite overlaps mn: the 
larger their size the greater the generalization ability of the network. Associated with these 
overlaps is the generalization error, defined as the Hamming distance 

6 P - - I *( I -”) (5 )  

between a state S; and a given concept. In the case of statistically independent concepts, 
as we have in this paper, one may focus on any one of them, say p = 1, in which case the 
generalization error is simply E 3 6’. 

In this paper we study the effect of thermal noise on the generalization ability. The 
paper is organized as follows. In section 2 we consider the effect of temperature in ivm, 
in the cases (I = p / N  = 0 and 01 # 0, following standard procedures for attractor neural 
networks [2,16,17]. Explicit phase diagrams are obtained. In section 3 we present the 
results of numerical simulations for (I # 0 and compare them with the predictions of ivm 
and with former numerical work at T = 0 [15]. In section 4 we summarize our results. 

2. Effect of noise in mean-field theory 

Following Fontanari [I41 we obtain the thermodynamic properties from the free energy 
associated to the Hamiltonian 



Generalization in a Hopfreld network with noise 3985 

where the term including the field h" is introduced to compute the overlap mp in the limit 
h" --f 0, according to 

2.1. Finite number of concepts 

Due the simplicity of this case, in which a = 0 we present just the final result obtained for 
the free energy density 

where (. . .) denotes averages over the examples and over the concepts, in this order. The 
overlap with the examples, defined as 

is obtained from the saddle-point equation 

m"" = e'" tanh Cmp"tP")) ( 
and the overlaps with the concepts (generalization overlaps) obtained from (7) are given by 

We consider a particular class of solutions of the form mw' = m1"6,1, with m" given 

(12) 

that has a bias for associative memory with any of the examples of a given concept (here 
p = 1). This kind of solution ensures that any other network behaviour will be a spontaneous 
property of the network and not a consequence of the particular class of chosen solutions. 
Note that any example can be selected as the first one, U = 1, since this solution is s 
degenerate. The equations for ,I1 and m,-j are 

(13) 

by WI 
m'" = m"61, + ( I  - 81u)ms-l 

m" = (<I' tanh[p(m":" +ms-lxs-l)]) 

m,-l = -(X$-I tanh[B(m"t" + m s - l x z - ~ ) l )  (14) 
1 

s - 1  

where X,-I = cv,l 6'" is a random variable that follows a binomial probability distribution 
given by 

with k = i ( x S - l  + s - 1). We keep this distribution in place of the Gaussian appropriate 
for large s [14] in order to have reliable results also for small s. The averages in (13) and 
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(14) over 6" .  x,-l and .$I, in this order, yield 
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where 

1 + b 

A* = mi' j, m,-l(W - s + I ) .  

Similarly, the generalization overlap m' that follows from (1 1) is given by 

where 
k+l l + b  

Equation (20) yields then the generalization error E = (1 - m1)/2. 
Solving equations (1 3 x 2 1 )  for several temperatures and evaluating the corresponding 

free energy in each case, in order to make a stability analysis, yields the phase diagram 
shown in figure I ,  for two values of b. 

The retrieval phase ( R )  corresponds to asymmetric solutions in which the network 
retrieves a particular example so that m" f m$-I. For low temperatures mi' E3 I. 
m,-l E3 b2 and mi  E3 b, corresponding to a generalization error B % (1 - b)/2.  In the 
retrieval phase there is also the competing symmetric solution mII = ms-I, which is the 

Figure 1. Phase diagram for s examples 
of a finite number of concepts (a = 0) and 
two values of the carrelalion parameter: b = 
0.25 (full lines) and b = 0.20 (dashed lines). 
The doted line separates lhe global slability 
regions for retrieval of examples (R) and 
symmetric mixture states (s) forb = 0.25. 
The generalizalion (G) and paramagmetic (P) 
phases are shown. 
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more stable solution in the region s to the right of the dotted l i e  in figure 1, for b = 0.25, 
while the retrieval solution becomes more stable to the left of that l ie.  There exists a line 
of first-order phase transitions defining a critical number of examples s, above which the 
network starts to generalize. Our T = 0 results of s, = 22, for b = 0.25, and sc = 42, for 
b = 0.20, are consistent with figure 2 of [14]. 

In the generalization phase (G) the network is not able to recover a particular example 
but it rather recognizes the common feature of the examples in the form of symmetric 
mixture states, m" = ms-, .  Were it not for the simultaneous sharp increase of the overlap 
with the concept associated with those examples (which is what is meant by generalization) 
as shown in figure 2, one would have a state of perfect confusion. Our results for the 
generalization error at T = 0 is in agreement with figure 1 of [141. 

Increasing the temperature we reach a paramagnetic phase (P) where the network neither 
generalizes nor retrieves the examples (m" = m,-l = mt = 0). The P+ transition is of 
second order with a phase boundary given by 

(22) To(b) = 1 + (S - l)b2 

m, = (l/s)(xr mh(Bm,x,)) (23) 

and the solutions in the generalization phase are the symmetric mp" = m,&l, Vu, with 

where 

Note, incidentally, as one would expect, that increasing b (i.e., the correlation between 
examples and concepts), the generalization phase grows at the expense of the paramagnetic 
and retrieval phases. Note also that the generalization performance of the network first 
improves with an increasing synaptic noise, in that a smaller number of examptes has to be 
presented, and that generalization becomes harder when the noise level is above To@). 

2.2. Macroscopic number of concepts 

We deal here with the case where (Y = p / N  is finite in the thermodynamic limit N -+ 63. 
In this case the network should create an extensive number of representations having access 
only to a finite number of examples. In order to compute the free energy density it is 
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necessary to resort to the replica method [17]. Allowing only for the examples (6'''1 to 
condense, and assuming replica symmetry (RS), the average free energy density becomes 
through standard calculations 

1 arc a 
B f = x ( m ' u ) 2  + - - InC(q) - Dz (ln12cosh(BA)I~ 

where 

I n G ( q ) = - ~ [ ( s - 1 ) I n ( l - C ( 1 - b 2 ) ) + I n ( l  -C(1-b2+sbZ))  

1 Bqs(l -C(I -b2) (1-b2+sb2))  
(1 - C( 1 - bZ))(l  - C(l - b2 + sb')) 

- 

The order parameters are obtained from the saddle-point equations (taking hG = 0) 

[ I  - C(1 - b%I - b2 +sb2)l2 + (s - l)b4 
r = sq (32) [ I  - C(l  - b2)]*[1 - C(I - b2 + sb2)]* 

and, from (7) 

Since the generalization ability is characterized by a symmetric solution (m"" = m&), 
equations (30) and (31) become 

The averages over the examples and the concepts yield 
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where 
k P*(k) = ( T ) k  l t b  & ( ~ ) 4 - *  l + b  (q) 

and 

A’ = &z + m,(2k - s) . 
The overlap with the concepts becomes 

3.0 
TP 

(39) 

F i r e  3. Finite-@ phase diagram for b = 
0.4 and s = 10 examples. A globally 
stable spin-glass (so) phase appears above 
T,. and a region of locally or globally 
stable generalization states (0) exisk above 
OT below T8, respectively. 

,~ 

By solving these equations we obtain the (a. T) phase diagram shown in figure 3 for 
correlation parameter b = 0.4 and s = 10 examples. There exists a critical temperature 
Tp above which m, = 0 and q = 0, characterizing the paramagnetic phase (P). Below this 
temperature and above the curve T, there is a spin glass phase (SG) where m, = 0 and q # 0, 
in which the solutions have no correlation neither with the concepts nor with the examples. 
Here the network is in a state of total confusion. A finite overlap m, characterizing a G phase 
appears discontinuously at the phase boundary T,. However, the SG solution has the lower 
free energy until the lower phase boundary Tg is reached, where the G phase is the most 
stable one, in which the states are strongly correlated with the concepts. In this region the 
order parameters are m, # 0 and q # 0. An interesting feature is the reentrant shape in the 
spin glass phase below a small temperature also found recently by Naef and Canning [18], 
within a RS calculation. The reentrance does not appear with replica symmetry-breaking 
(RSB), in which case the lowest part of the phase boundary is moved slightly to the right 

Our result, figure 3, at T = 0 for the critical a, N 0.01. beyond which generalization is 
no loger possible, is in agreement with Fontanari’s work [ 141. Indeed, the ratio crc/ao N 0.07 
is the same as that of figure 4 of [14], where a0 4 0.138 is the storage capacity of the 
standard Hopfield model. 

The role of temperature for finite a is different from that found in the a = 0 case. Now it 
is no longer possible to control the desired creation of concepts just by tuning the temperature 
for a fixed number of examples. The spin-glass phase that competes with the generalization 
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Figure 4. Phase diagram for (Y = 0.03125 
and b = 0.5 showing the paramagnelic (P). 
spin-glass (so) and the generalization (0) 

phases. 

Figure 5. MPT results for the critic& number 
of examples as a function of 01 for b = 0.6. 

phase is stabilized by the Gaussian noise due to the uncondensed examples ($””), p > 1. 
Nevertheless, the network ability to generalize is still fairly robust against synaptic noise. 
On the other hand, the presentation of a sufficiently large number of examples is still crucial 
in creating a representation for the concepts, as shown in figure 4. There is a critical number 
of exemples, sc. that has to be reached for generalization to take place, for a given a and b. 
At T = 0, this value is s, = 13 which, together with the ratio a& n. 0.22, is in agreement 
with the results of figure 4 of Fontanari’s work [ 141. A direct check of the results of our 
equations against the curves of figure 4 of [14], for b = 0.2 and 0.4 was also carried out. 
Our analytical r e d &  for the generalization error can be. found below. 

The generalization error decreases with the number of examples, for s > s,, according 
to a power-law behaviour. in consistency with the result of Miranda [15], who also finds that 
the critical number of examples grows exponentially with the noise level in the examples 
(as compared to the concepts) shown to the network and grows linearly with a. In contrast 
we find, for T = 0 and a = 0.05, that sc - b-Y with y n. 2.99, and that the critical number 
of examples varies with a in a way shown in figure 5. instead of the linear law sc - a [ 151. 
These results follow from fits on the numerical solution of the equations fors  = s,. 

The calculations within this paper are restricted to RS because RSB has only a very small 
effect at very low noise level in a neural network with a Hebbian learning mle. equation (l), 
[I71 and we are mainly interested in establishing the effects of a finite noise level. To check 
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on the replica method (even with standard RSB procedures [20] it has not been fully justified) 
we resort next to numerical simulations. 

3. Numerical simulations 

We verify the predictions of MFT discussed in the previous section by means of numerical 
simulations for finite 01, at zero and finite temperature. For zero temperature the dynamic 
evolution of the system consists in updating the neurons at each time step according to 

where hi@) = E,, AjSj( t )  is the local field acting in the neuron i .  This procedure 
decreases the system energy every time that one spin is updated so that Sj(t + I)h, ( t +  I )  > 0. 
Storage of the synaptic matrix J;j is very expensive in terms of computer memory, so we 
store only the examples and the concepts. The system dynamics can be described in terms 
of the overlaps m p Y  which are calculated with the network in an initial state that coincides 
with an example and are updated at every time step by one spin-flip. For this purpouse it 
is convenient to express the Hamiltonian (3) in terms of the overlaps 

Equation (42) is then used to perform the Monte Carlo simulations in standard way 1211. 

,I,: 

I L  Figure 6. Generalization error c w e s  
obtained from simulations for e = 0.03125, 

I I .  b = 0 5  at T = 0 (triangles), T = 0.4 
(squares). T = 0.8 (diamonds) and T = 1.2 I 1. 

(inverted biangles). The lines w m p o n d  to i". . 
0.20 

, 
E I A A  ?.*::U 

0 10 

'..:..TLY- - the analytical results For T = 0 (full line), 
5 70 I5 20 25 T = 0.4 (dotted line), T = 0.8 (dashed line) 

The numerical results for the generalization error for finite a and various T are shown 
in figure 6, together with analytical results, for a network with N = 2048, b = 0.5 and 
(I = 0.03125, setting the initial configuration as an example. Note first, that there is a spin 
glass regime that competes with generalization starting with the SG for 3 5 s 5 s,, where s, 
is the critical number of examples. The so phase appears, quite early due to the relatively 
large value of 01, where there is an exponentially large number of metastable states. Since 
these states are stable against single spin flips, the system becomes trapped in these states 
resulting in non-zero overlaps mp" and mp. For this reason the generalization error shown 
by the numerical results does not reach the theoretical equilibrium prediction, E = 0.5. This 
is also due to finite system size [D]. 

At s = sc there is a transition to the generalization regime, which seems to follow the 
analytical prediction except for the very lowest noise levels. The critical generalization 

0 00 

S and T = 1.2 (doldashed line). 
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error at T = 0, ec E 0.08, which is the lower value of E on the jump, is in agreement with 
the results of figure 5 of [14]. An accurate estimate of the critical number of examples for 
generalization from numerical simulations is strongly dependent on system size, (cf [22]). 
The size of our network (N = 2048) is somewhat restrictive and that is even more so in 
Miranda's case, where N = 512 neurons. Finally, at T = 0 (upper triangles) there is a 
small plateau at E = 0.25 for s 5 2 where the examples are retrieved. 

P R Krebs and W K Theumonn 

4. Conclusions 

In this paper we studied, by means of MFT and numerical simulations, the effecui of synaptic 
noise on the generalization ability of the Hopfield model of an attractor neural network 
trained with examples of the pattems for which a representation is to be created, when 
the training takes place according to the Hebb leaming rule. We confirm that symmetric 
mixture states play a relevant role in generalization in that they serve to extract the common 
features of the examples that lead to a representation for the concepts. 

We find that synaptic noise has quite different effects depending on whether the number 
of concepts to be created is macroscopic or not. If only a finite number of concepts is 
considered, synaptic noise helps to generalize, up to a fairly high noise level, but this is 
no longer the case for a macroscopic number of pattems. Nevertheless, the network is still 
able to generalize in the presence of noise as long as the storage ratio Q remains below the 
critical saturation value. 

A better 
understanding of the role of synaptic noise, however, requires a study of the metastable 
states, which is currently being carried out and about which we expect to report in a 
forthcoming publication. 

The f i n i t e a  phase diagrams are in accordance with what one expects. 
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